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Abstract In the well-known Kohn–Sham theory in density functional theory, a fic-
titious non-interacting system is introduced that has the same particle density as a
system of N electrons subjected to mutual Coulomb repulsion and an external elec-
tric field. For a long time, the treatment of the kinetic energy was not correct and
the theory was not well-defined for N -representable particle densities. In the work of
(Hadjisavvas and Theophilou in Phys Rev A 30:2183, 1984), a rigorous Kohn–Sham
theory for N -representable particle densities was developed using the Levy–Lieb func-
tional. Since a Levy–Lieb-type functional can be defined for current density functional
theory formulated with the paramagnetic current density, we here develop a rigorous
N -representable Kohn–Sham approach for interacting electrons in magnetic field. Fur-
thermore, in the one-electron case, criteria for N -representable particle densities to be
v-representable are given.

Keywords Density functional theory · Kohn–Sham theory · Levy–Lieb functional ·
Current density functional theory · N -representable

1 Introduction

In the fundamental paper by Hohenberg and Kohn [1], the theoretical foundation
of density functional theory (DFT) was established. The Hohenberg–Kohn theorem
states that, for a quantum mechanical system, the particle density ρ determines the
scalar potential v of the system up to a constant. From this, in principle, the ground-
state wavefunction can be computed. For particle densities that come from a unique
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ground-state, the so-called v-representable particle densities, an energy functional
was defined and proven to satisfy a variational principle [1]. Subsequently, Kohn and
Sham provided an algorithm [2], the Kohn–Sham equations, for computing the den-
sity. These equations bear much resemblance to the Hartree–Fock integro-differential
equations. The idea of Kohn and Sham was to introduce a fictitious system of non-
interacting particles that has the same particle density as the real interacting system.
The particle density can then be computed from a determinant wavefunction. This
was achieved by means of the exchange-correlation functional, which accounts for
the non-classical two-particle interactions and the residual between the interacting
and non-interacting kinetic energy. The domain of this functional is the intersection
of the set of v-representable and non-interacting v-representable particle densities.
However, this functional remains unknown.

The Hohenberg–Kohn–Sham theory relies on, when minimizing the energy, one
does not go outside the domain of the exchange-correlation functional. Since for a
well-behaved wavefunction ψ , the corresponding N -representable particle density ρ
can be non-v-representable [3,4], one can not minimize freely over determinant wave-
functions (see also [5]). This means, in principle, that any v-representable formalism
is unjustified. However, as was proven by Lieb in [3] (see also the related work of
Levy [6]), for any N -representable particle density ρ there exists a wavefunction ψ ,
with particle density ρ, that minimizes the potential-free Hamiltonian (kinetic energy
and repulsive two-particle interactions) under the constraint that ρ is fixed. Using the
existence of such a minimizer, Hadjisavvas and Theophilou [7] developed a mathemat-
ically rigorous N -representable Kohn–Sham approach. The importance of this work
relies on the fact that N -representability can be guaranteed for a proper wavefunction,
whereas v-representability cannot.

In the presence of a magnetic field, no general Hohenberg–Kohn theorem has been
proven to exist that is valid for any number of electrons. (In the special case ψ real-
valued a Hohenberg–Kohn theorem can be proven, see [8]). For the formulation of
current density functional theory (CDFT) that uses the paramagnetic current density
j p, it is well-known that the density pair (ρ, j p) does not determine the scalar potential
and vector potential of the system [9]. Counterexamples have been constructed that
show that a ground-state can come from two different Hamiltonians [9,10]. Thus, the
particle density ρ and the paramagnetic current density j p do not fully determine the
Hamiltonian. For a many-electron system, neither proof nor counterexample exists so
far in the literature for a general Hohenberg–Kohn theorem formulated with the total
current density j [10,11]. In the one-electron case, on the other hand, it is possible to
give a direct proof that ρ and j determine the scalar and vector potential up to a gauge
transformation [10,11].

However, since the density pair (ρ, j p) determines the (possibly degenerate)
ground-state(s) of the system [10,12], this work aims at continue the N -representable
approach of [7] and develop a rigorous Kohn–Sham approach for CDFT formu-
lated with the paramagnetic current density j p. The N -representable Kohn–Sham
approach outlined here does not use any variational principle for densities. Instead,
the approach relies on the existence of minimizers for certain (Levy–Lieb-type) density
functionals.
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2 Current density functional theory

We will in this paper consider a system of N interacting electrons subjected to both an
electric and a magnetic field. The system’s Hamiltonian is given by (in suitable units)

H(v, A) =
N∑

k=1

(
(i∇k − A(xk))

2 + v(xk)
)

+
∑

1≤k<l≤N

|xk − xl |−1,

where v(x) is the scalar potential and A(x) the vector potential. The magnetic field is
computed from B(x) = ∇ × A(x). Throughout we will assume that the ground-state
is non-degenerate, i.e., dim ker(e0 − H(v, A)) = 1, where e0 is the lowest eigenvalue
of H(v, A).

2.1 Preliminaries

To begin with, some mathematical concepts needed for the forthcoming discussion are
introduced. We first mention some relevant function spaces. If for some p ∈ [1,∞) a
function f satisfies

∫
Rn | f |p < ∞, then f belongs to the normed space L p(Rn) with

norm || f ||L p(Rn) = (
∫
Rn | f |p)1/p. In the case p = ∞, we say f ∈ L∞(Rn) if

|| f ||L∞(Rn) = ess sup{| f | |x ∈ R
n} < ∞.

Furthermore, f ∈ L2(Rn) is said to belong to the Hilbert space H1(Rn) if

|| f ||2H1(Rn)
=

∫

Rn
| f |2 +

∫

Rn
|∇ f |2 < ∞.

Let BR = {x ∈ R
n| |x | ≤ R} for R > 0. Then f ∈ L1

loc(R
n) whenever

∫
BR

| f | < ∞
for any BR . For a vector u such that (u)l ∈ L p, l = 1, 2, 3, we write u ∈ (L p)3.

We say that a sequence {ψk} ⊂ L p(Rn) converges in L p(Rn)-norm toψ ∈ L p(Rn)

if
∫
Rn |ψk − ψ |p → 0 as k → ∞, and we write ψk → ψ . For the Hilbert space

L2(Rn), with inner product (ψ, φ)L2(Rn) = ∫
Rn ψ

∗φ, we say that {ψk} ⊂ L2(Rn)

converges weakly to ψ ∈ L2(Rn) if (ψk, φ)L2(Rn) → (ψ, φ)L2(Rn) as k → ∞ for all
φ ∈ L2(Rn), and we write ψk ⇀ ψ . For weak convergence in H1(Rn), we require
(ψk, φ)H1(Rn) → (ψ, φ)H1(Rn) as k → ∞ for all φ ∈ H1(Rn), where the inner
product of H1(Rn) is given by (ψ, φ)H1(Rn) = ∫

Rn ψ
∗φ + ∫

Rn ∇ψ∗ · ∇φ. Weak
convergence on H1(Rn) implies weak convergence in the L2(Rn) sense. A functional
f is said to be weakly lower semi continuous ifψk ⇀ ψ implies lim infk→∞ f (ψk) ≥
f (ψ). In particular, lim infk→∞ ||ψk ||L2(Rn) ≥ ||ψ ||L2(Rn) if ψk ⇀ ψ weakly in
L2(Rn).

For a fixed particle number N , define the set of proper wavefunctions to be

WN = {ψ ∈ H1(R3N )|ψ antisymmetric and ||ψ ||L2(R3N ) = 1}
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and let the ground-state energy of H(v, A) be given by

e0(v, A) = inf{Ev,A(ψ)|ψ ∈ WN },

where

Ev,A(ψ) =
N∑

k=1

(∫

R3N
|(i∇k − A(xk))ψ |2 +

∫

R3N
|ψ |2v(xk)

)

+
∑

1≤k<l≤N

∫

R3N
|ψ |2|xk − xl |−1.

We will define the inner-product (ψ, H(v, A)ψ)L2 as the number Ev,A(ψ) for ψ ∈
WN , even if H(v, A)ψ /∈ L2.

The particle and paramagnetic current density for ψ ∈ WN are computed from

ρψ(x) = N
∫

R3(N−1)
|ψ(x, x2, . . . , xN )|2dx2 . . . dxN ,

j p
ψ(x) = N Im

∫

R3(N−1)
ψ∗(x, x2, . . . , xN )∇xψ(x, x2, . . . , xN )dx2 . . . dxN ,

respectively. We will use the notation ψ 
→ (ρ, j p) to mean ρψ = ρ and j p
ψ = j p.

Furthermore, we shall use the notation H0 for the Hamiltonian H(v, A) when the
potential terms are set to zero, i.e.,

(ψ, H0ψ)L2 =
N∑

k=1

∫

R3N
|∇kψ |2 +

∑

1≤k<l≤N

∫

R3N
|ψ |2|xk − xl |−1.

Note that

Ev,A(ψ) = (ψ, H(v, A)ψ)L2 = (ψ, H0ψ)L2 + 2
∫

R3
j p
ψ · A +

∫

R3
ρψ(v + |A|2),

which follows from a direct computation.

2.2 N -representable DFT

A v-representable particle density is a density ρ that satisfies ρ = ρψ and where ψ
is the ground-state of some H(v). (We will use the notation H(v) = H(v, 0) and
e0(v) = e0(v, 0) when not considering magnetic fields). The set of N -representable
particle densities is given by [3]

IN =
{
ρ|ρ ≥ 0,

∫

R3
ρ = N , ρ1/2 ∈ H1(R3)

}
.
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As demonstrated by Englisch and Englisch in [4], not every N -representable particle
density is v-representable. For ρ ∈ IN , the Levy–Lieb functional [3,6]

FL L(ρ) = inf{(ψ, H0ψ)L2 |ψ ∈ WN , ψ 
→ ρ}

is well-defined. As was proven in [3] (Theorem 3.3), there exists a ψ0 ∈ WN such
that FL L(ρ) = (ψ0, H0ψ0)L2 and ρψ0 = ρ. The functional FL L(ρ) extends the
Hohenberg–Kohn functional to N -representable densities, and for the ground-state
energy we have

e0(v) = inf
{

FL L(ρ)+
∫

R3
ρv|ρ ∈ IN

}
.

Note that the number e0(v) is well-defined for v ∈ L3/2(R3) + L∞(R3) even if
H(v) does not have a ground-state. (

∫
R3 ρv is finite for all ρ ∈ IN , since IN ⊂

L1(R3) ∩ L3(R3), see [3].)

2.3 N -representable CDFT

A density pair (ρ, j p) is said to be v-representable if there exists aψ that is the ground-
state of some Hamiltonian H(v, A) such that ρ = ρψ and j p = j p

ψ . We denote this
set of densities AN , i.e.,

AN = {(ρ, j p)|there exists a H(v, A) with ground-state ψ such that ψ 
→ (ρ, j p)}.

Now, assume that H(v1, A1) and H(v2, A2) have the ground-states ψ and φ, respec-
tively. Then from Theorem 9 in [10], ifψ 
→ (ρ, j p) and φ 
→ (ρ, j p), it follows that
ψ = const.φ. For (ρ, j p) ∈ AN , let ψρ, j p denote the ground-state of some H(v, A)
such that ψ 
→ (ρ, j p). Then the generalized Hohenberg–Kohn functional

FH K (ρ, j p) = (ψρ, j p , H0ψρ, j p )L2

is well-defined on AN . Furthermore (Theorem 2 in [13]),

e0(v, A) = min
{

FH K (ρ, j p)+ 2
∫

R3
j p · A +

∫

R3
ρ(v + |A|2)

∣∣∣(ρ, j p) ∈ AN

}

for (v, A) ∈ VN , where

VN = {(v, A)| H(v, A) has a unique ground-state}.

However, a ψ ∈ WN may be such that (ρψ, j p
ψ) /∈ AN . From Proposition 3 in [13],

ψ ∈ WN implies that ψ 
→ (ρ, j p) ∈ YN , where
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YN =
{
(ρ, j p)|ρ ≥ 0,

∫

R3
ρ = N , ρ1/2 ∈ H1(R3), j p ∈ (L1(R3))3,

∫

R3
| j p|2ρ−1 < ∞

}
.

The set YN is referred to as the set of N -representable density pairs (ρ, j p). It is a
convex set and AN � YN (Proposition 4 in [13]). For (ρ, j p) ∈ YN , define as in [13]

Q(ρ, j p) = inf{(ψ, H0ψ)L2 |ψ ∈ WN , ψ 
→ (ρ, j p)}.

The functional Q(ρ, j p) is the generalization of the Levy–Lieb functional FL L(ρ). It
also depends on the paramagnetic current density j p. The functional Q(ρ, j p) inherits
many properties of FL L(ρ): by Theorems 5 and 6 in [13], we have (i) Q(ρ, j p) =
FH K (ρ, j p) for (ρ, j p) ∈ AN , (ii) there exists a ψm ∈ WN such that Q(ρ, j p) =
(ψm, H0ψm)L2 and where ψm 
→ (ρ, j p), and (iii)

e0(v, A) = inf
{

Q(ρ, j p)+ 2
∫

R3
j p · A +

∫

R3
ρ(v + |A|2)

∣∣∣(ρ, j p) ∈ YN

}
.

In [7], FL L(ρ)was used to obtain a rigorous Kohn–Sham theory for N -representable
densities. Before generalizing this to CDFT formulated with j p, we shall discuss
the following question raised in [7]: since a ψ0 ∈ WN exists such that FL L(ρ) =
(ψ0, H0ψ0)L2 and ψ0 
→ ρ, does ψ0 satisfy any Schrödinger equation, i.e., is there a
v(x) such that H(v)ψ = eψ?

3 Characterization of V -representable particle densities

We start be stating the mentioned result of Lieb (Theorem 3.3 in [3]) for the functional
FL L(ρ).

Theorem 1 There exists a ψ0 in WN such that for ρ ∈ IN , FL L(ρ) = (ψ0, H0ψ0)L2

and ρψ0 = ρ.

Let ρ ∈ IN . In light of Theorem 1, if the minimizer ψ0 would be the ground-state
of some Hamiltonian H(v), then ρ would be v-representable. However, since the
v-representable densities are a proper subset of the N -representable ones [4], there
exists ρ ∈ IN such that the corresponding minimizer ψ0 is not the ground-state of any
Hamiltonian H(v). Also note that, if ρ is v-representable, then the minimizer ψ0 is
also the ground-state associated with ρ. This so since if ρ is v-representable, then by
the definition of the minimizer ψ0, we have

(ψ0, H0ψ0)L2 +
∫

R3
ρv = e0(v)

for some v, i.e.,ψ0 is the ground-state of H(v). (A similar result holds for a minimizer
of Q(ρ, j p), see Proposition 5.)
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Now, let N = 1. Note the following: (ψ, H0ψ)L2 = ∫
R3 |∇ψ |2dx ≥∫

R3 |∇|ψ ||2dx . Thus, for FL L(ρ), it is enough to minimize over the non-negative
functions of W1, i.e.,

FL L(ρ) = inf
{ ∫

R3
|∇ψ |2dx |ψ ∈ W1, ψ ≥ 0, ψ2 = ρ

}
.

We now give criteria when ψ0 in Theorem 1 is an eigenfunction of some H(v).

Proposition 2 (i) Let N = 1 and ρ ∈ I1 be such that ψ0 fulfills �ψ0 ∈ L2(R3) and
ψ0 �= 0 almost everywhere (a.e.), where ψ0 ≥ 0 minimizes

∫
R3 |∇ψ |2 subject to the

constraint ψ2 = ρ. Then there exists a φ0 ∈ L2(R3) and a constant e such that, with
v − e = φ0/ρ

1/2, ψ0 satisfies

−�ψ0 + vψ0 = eψ0,

and where
∫
R3 v|ψ0|2 > −∞.

(ii) For N = 1, there exists ρ0 ∈ I1 such that �ψ0 /∈ L2(R3), and −�ψ0 + vψ0 = 0
implies

∫
R3 v|ψ0|2 = −∞.

Proof By assumption, ψ0 > 0 a.e. and ψ0 = ρ1/2. Now, set φ0 = �ψ0, which is in
L2(R3). Then with v − e = φ0/ρ

1/2 the conclusion of the first part follows, since

∫

R3
v|ψ0|2 =

∫

R3
φ0ρ

1/2 + e ≥ −||φ0||L2 + e.

For the second part, set, for small |x1|, ρ0(x) = ρ1(x1)ρ̃(x2, x3), where ρ̃(x2, x3)

is regular and ρ1(x1) = (a + b|x1|ε+1/2)2, a, b > 0 and 0 < ε < 1/2. Then
�ψ0 /∈ L2(R3). Furthermore, −�ψ0 + vψ0 = 0 implies

∫
R3 v|ψ0|2 = −∞. (The

density ρ0 is the counterexample of Englisch and Englisch that shows that not every
N -representable density is v-representable, see [4].) �

Note that ψ0 is not proven to be the ground-state of −�+ v. However, we have

Corollary 3 Let ρ, ψ0 and φ0 be as in Proposition 2 (i). In addition, assume that
φ0 ≤ Cρ1/2 for some constant C and that ρ−1 ∈ L1

loc(R
3). Then ψ0 is the ground-

state of −�+ v.

Proof From Proposition 2, we know that −�ψ0+vψ0 = eψ0, where v = φ0/ρ
1/2+e.

By Schwarz’s inequality, it follows that v ∈ L1
loc(R

3). Since v is also bounded above,
we have by Corollary 11.9 in [14] that ψ0 > 0 is the ground-state of −�+ v. �

We can thus conclude with the following characterization: if ρ ∈ I1 satisfies
(i) ρ > 0 (a.e.), (ii) �ρ1/2 ∈ L2(R3) and bounded above by a constant times ρ1/2,
and (iii) ρ−1 ∈ L1

loc, then ρ is v-representable.
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4 Rigorous Kohn–Sham theory for CDFT

By means of the Levy–Lieb-type density functional Q(ρ, j p) we can formulate a
rigorous N -representable Kohn–Sham approach for CDFT as that of Ref. [7] for DFT.
Now, fix the particle number N . We say that a wavefunction φ ∈ WN is a determinant
if there exist N orthonormal one-particle functions f k such that

φ(x1, . . . , xN ) = (N !)−1/2 det[ f k(xl)]k,l .

Let the space of all normalized determinants of finite kinetic energy be denoted WS ,
i.e.,

WS = {φ|φ is a determinant, ||φ||L2(R3N ) = 1, (φ, Kφ)L2(R3N ) < ∞},

where K = −∑N
k=1�k . Note that, in particular, for a φ ∈ WS , we have ρφ =∑N

k=1 | f k |2 and

(φ, Kφ)L2(R3N ) =
N∑

k=1

∫

R3
|∇ f k |2dx .

Thus, ||φ||L2(R3N ) = 1 and (φ, Kφ)L2(R3N ) < ∞ are equivalent to f k ∈ H1(R3) for
all k. Also note that a ψ ∈ WN is not in general an element of WS , i.e., WS � WN .

Furthermore, define, for a non-interacting system, the non-interacting Hamiltonian

H ′(v, A) =
N∑

k=1

(
(i∇k − A(xk))

2 + v(xk)
)
.

The non-interacting ground-state energy is then given by

e′
0(v, A) = inf{E ′

v,A(ψ)|ψ ∈ WN },

where E ′
v,A(ψ) is given by the relation

E ′
v,A(ψ)+

∑

1≤k<l≤N

∫

R3N
|ψ |2|xk − xl |−1 = Ev,A(ψ).

This motivates: set, for (ρ, j p) ∈ YN ,

Q′(ρ, j p) = inf{(ψ, Kψ)L2 |ψ ∈ WN , ψ 
→ (ρ, j p)}.

For Q(ρ, j p) and Q′(ρ, j p) we have the following.

Theorem 4 Fix (ρ, j p) ∈ YN , then (i) there exists a ψm ∈ WN such that ψm 
→
(ρ, j p) and Q(ρ, j p) = (ψm, H0ψm)L2 , and (ii) there exists a ψ ′

m ∈ WN such that
ψ ′

m 
→ (ρ, j p) and Q′(ρ, j p) = (ψ ′
m, Kψ ′

m)L2 .
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Remark Part (i) above is just Theorem 5 in [13]. However, for (ii), we can use the
same proof. For the sake of completeness we will give the proof in [13] here applied
to Q′(ρ, j p). See also the related work of Higuchi and Higuchi [15], where Theorem
5 in [13] was first suggested.

Proof Let {ψ j }∞j=1 be a minimizing sequence, i.e., ψ j ∈ WN , ψ j 
→ (ρ, j p) and

lim
j→∞(ψ

j , Kψ j )L2 = Q′(ρ, j p). (1)

Since {ψ j }∞j=1 is bounded in H1(R3N ), by the Banach–Alaoglu theorem there exists

a subsequence and a ψ ′
m ∈ H1(R3N ) such that ψ jk ⇀ ψ ′

m weakly in H1(R3N ) as
k → ∞. Since the functional ψ 
→ (ψ, Kψ)L2 is weakly lower semi continuous, we
know that

(ψ ′
m, Kψ ′

m)L2 ≤ Q′(ρ, j p).

However, it remains to prove that ψ ′
m 
→ (ρ, j p). In the proof of Theorem 3.3 in [3],

it is shown that ψ jk → ψ ′
m in L2(R3N ) and ψ ′

m 
→ ρ. Now, let g be the characteristic
function of any measurable set in R

3. For l = 1, 2, 3 and k = 1, 2, . . . , let

Il(k) =
∣∣∣∣
∫

R3N
[(ψ jk )∗∂lψ

jk − (ψ ′
m)

∗∂lψ
′
m]g

∣∣∣∣ .

Then

Il(k) ≤
∣∣∣∣
∫

R3N
(ψ jk − ψ ′

m)
∗(∂lψ

jk )g

∣∣∣∣ +
∣∣∣∣
∫

R3N
(ψ ′

m)
∗(∂lψ

jk − ∂lψ
′
m)g

∣∣∣∣

≤ ||ψ jk − ψ ′
m ||L2 ||(∂lψ

jk )g||L2 +
∣∣∣∣
∫

R3N
(ψ ′

m g∗)∗(∂lψ
jk − ∂lψ

′
m)

∣∣∣∣ .

Thus Il(k) tends to zero as k → ∞ (because ψ jk → ψ ′
m in L2(R3N )-norm and

ψ jk ⇀ ψ ′
m weakly in H1(R3N ) as k → ∞). Since ψ jk 
→ j p for all k, we have∫

R3( j p)l g = ∫
R3( j p

ψ ′
m
)l g, i.e., j p

ψ ′
m
(x) = j p(x) a.e. �

Proposition 5 Assume that (ρ, j p) ∈ AN , i.e., there exists a H(v, A) with ground-
stateψ such thatψ 
→ (ρ, j p). Then the minimizerψm is the ground-state of H(v, A).

Proof Since ψ 
→ (ρ, j p), we have (ψ, H0ψ)L2 ≥ (ψm, H0ψm)L2 . The conclusion
then follows from

e0(v, A) ≤ (ψm, H(v, A)ψm)L2 = (ψm, H0ψm)L2 + 2
∫

R3
j p · A

+
∫

R3
ρ(v + |A|2)

≤ (ψ, H0ψ)L2 + 2
∫

R3
j p · A +

∫

R3
ρ(v + |A|2)
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= (ψ, H(v, A)ψ)L2 = e0(v, A).

�
Note that when H0 is replaced by K , Q′(ρ, j p) is the minimal kinetic energy for

ψ ∈ WN such that ρψ = ρ and j p
ψ = j p. Next we will introduce another kinetic

energy density functional.

4.1 Non-interacting kinetic energy density functional

Set, for (ρ, j p) ∈ YN ,

Tdet(ρ, j p) = inf{(φ, Kφ)L2 |φ ∈ WS, φ 
→ (ρ, j p)}.

For (ρ, j p) ∈ YN , we remark that the set {φ ∈ WS|φ 
→ (ρ, j p)} is not empty, at least
when N ≥ 4. This follows from the determinant construction in [16]. However, for
all N , the set {φ ∈ WS|φ 
→ (ρ, j p),∇ × ( j p/ρ) = 0} is non-empty (see [13,16]).

We have that Tdet(ρ, j p) ≥ Q′(ρ, j p) on YN . Now, let the set of non-interacting
v-representable densities be denoted A′

N ,

A′
N = {(ρ, j p)|H ′(v, A) has a unique ground-state}.

If (ρ, j p) ∈ A′
N , by the same argument as in the proof of Proposition 5, we can

conclude that ψ ′
m is the ground-state of some H ′(v, A). Clearly, ψ ′

m is in this case a
determinant. Thus, Tdet(ρ, j p) = Q′(ρ, j p) on A′

N .
An important property of Tdet(ρ, j p) is that the infimum actually is a minimum.

For the proof, we need the following:

(i) For k = 1, . . . , N , assume that f k
j → f k in L2-norm as j → ∞ and for each j ,

( f k
j , f l

j )L2 = δkl . Then f 1, . . . , f N are orthonormal. This so since

( f k, f l)L2 = lim
j→∞( f k

j , f l)L2 = lim
j→∞[( f k

j , f l − f l
j )L2 + ( f k

j , f l
j )L2 ] = δkl ,

where we used that |( f k
j , f l − f l

j )L2 | ≤ || f k
j ||L2 || f l − f l

j ||L2 → 0 as j → ∞.

(ii) If f j ⇀ f weakly in L2 as j → ∞ and || f j ||L2 → || f ||L2 as j → ∞, then
f j → f in L2-norm as j → ∞. (This is an elementary fact and can be checked
by expanding || f j − f ||2

L2 = ( f j − f, f j − f )L2 .)

Theorem 6 Let (ρ, j p) ∈ YN . If N < 4 we also assume ∇ × ( j p/ρ) = 0. Then there
exists a determinant φm such that φm 
→ (ρ, j p) and Tdet(ρ, j p) = (φm, Kφm)L2 .

Proof Fix (ρ, j p) ∈ YN and let {D j }∞j=1 ⊂ WS be a sequence of minimizing determi-

nants, i.e., D j 
→ (ρ, j p) and lim j→∞(D j , K D j )L2 = Tdet(ρ, j p). From the proof
of Theorem 4, there exists a subsequence D jn and aφm ∈ WN such thatφm 
→ (ρ, j p),

Tdet(ρ, j p) = (φm, Kφm)L2
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and D jn → φm in L2-norm. It remains to show that φm ∈ WS . To meet that end, let

D j (x1, . . . , xN ) = (N !)−1/2 det[ f k
j (xl)]k,l ,

where for each j the N one-particle functions f k
j are orthonormal. By the Banach–

Alaoglu theorem, there exist N functions f k such that (for a subsequence) f k
j ⇀ f k

weakly in L2 as j → ∞. We furthermore claim that f 1, . . . , f N are orthonormal. If
we could prove that f k

j → f k in L2-norm, it would follow that ( f k, f l)L2 = δkl .

We shall prove f k
j → f k by demonstrating that || f k

j ||L2 → || f k ||L2 . This together

with the fact that f k
j ⇀ f k weakly in L2 gives the desired result. Let ε > 0 and choose

a characteristic function χ such that
∫
R3 ρ(1 − χ) < ε. Since for each j , D j 
→ ρ,

we have for each k,

∫

R3
| f k

j |2(1 − χ) ≤
N∑

k=1

∫

R3
| f k

j |2(1 − χ) =
∫

R3
ρ(1 − χ) < ε.

By the Rellich-Kondrachov theorem, we can choose a subsequence such that χ f k
jn

→
χ f k in L2-norm. But this implies

∫

R3
| f k |2 ≥

∫

R3
χ | f k |2 = lim

n→∞

∫

R3
χ | f k

jn |2 ≥ 1 − ε.

Conversely, by the lower semi continuity of the L2-norm, 1 = lim inf j→∞ || f k
j ||L2 ≥

|| f k ||L2 , and we have || f k ||L2 = 1.
Returning to the fact that f k

jn
⇀ f k weakly in L2, we note that �N

k=1 f k
jn
(xk) ⇀

�N
k=1 f k(xk)weakly in L2(R3N ) (since product-functions are dense in L2(R3N )). But

then

D jn ⇀ (N !)−1/2 det[ f k(xl)]k,l ,

where f 1, . . . , f N are orthonormal. However, since D jn → φm , we have φm ∈ WS .
�

4.2 N -representable Kohn–Sham theory

In the Kohn–Sham approach [2], a non-interacting system is introduced that has the
same ground-state density as the fully interacting system. The idea is then to use an
element of WS , i.e., a determinant, to compute the ground-state density. On A′

N , the
(generalized) Kohn–Sham density functional TK S(ρ, j p) satisfies

TK S(ρ, j p) = Tdet(ρ, j p) = Q′(ρ, j p).
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Moreover, TK S defines an exchange-correlation functional Exc(ρ, j p) on AN ∩ A′
N

according to

Exc(ρ, j p) = FH K (ρ, j p)− 1

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x − y| dxdy − TK S(ρ, j p).

Now, to obtain an N -representable Kohn–Sham scheme, define two functionals on
WS ,

GK (φ) = inf{( f, K f )L2 | f ∈ WS, f 
→ (ρφ, j p
φ )},

GH0(φ) = inf{( f, H0 f )L2 | f ∈ WN , f 
→ (ρφ, j p
φ )}.

Note that, by Theorems 4 and 6, there exists a ψm ∈ WN and a φm ∈ WS such
that GH0(φ) = (ψm, H0ψm)L2 and GK (φ) = (φm, Kφm)L2 and where ψm, φm 
→
(ρφ, j p

φ ). Furthermore, we can use the existence of the minimizers ψm and φm and
define, for φ ∈ WS ,

�T (φ) = (ψm, Kψm)L2 − (φm, Kφm)L2 ,

EW
xc(φ) = (ψm,

∑

1≤k<l≤N

|xk − xl |−1ψm)L2 − 1

2

∫

R3

∫

R3

ρφ(x)ρφ(y)

|x − y| dxdy.

On WS , we now introduce the following energy functional

Gv,A(φ) = (φ, Kφ)L2 +�T (φ)+ 2
∫

R3
j p
φ · A

+
∫

R3
ρφ(v + |A|2)+ EW

xc(φ)+ 1

2

∫

R3

∫

R3

ρφ(x)ρφ(y)

|x − y| dxdy.

We then have

Theorem 7 Assume that H(v, A) has a unique ground-stateψ0. Let e0(v, A), ρ0 and
j p
0 denote the ground-state energy, ground-state particle density and ground-state

paramagnetic current density, respectively. If N < 4 we assume that ∇×( j p
0 /ρ0) = 0.

Then

e0(v, A) = inf{Gv,A(φ)|φ ∈ WS} = Gv,A(φm)

for some φm ∈ WS. Moreover, ρφm = ρ0 and j p
φm

= j p
0 , i.e., the ground-state densities

can be computed from the determinant φm that minimizes Gv,A.

Proof First note, for any φ ∈ WS , we have

Gv,A(φ) = (φ, Kφ)L2 + (
(ψm, Kψm)L2 − (φm, Kφm)L2

)

+ 2
∫

R3
j p
φ · A +

∫

R3
ρφ(v + |A|2)+ (ψm,

∑

1≤k<l≤N

|xk − xl |−1ψm)L2
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≥ (ψm, (K +
∑

1≤k<l≤N

|xk − xl |−1)ψm)L2 + 2
∫

R3
j p
φ · A

+
∫

R3
ρφ(v + |A|2)

= Ev,A(ψm) ≥ e0(v, A),

where we used that (φ, Kφ)L2 − (φm, Kφm)L2 ≥ 0 and ψm 
→ (ρφ, j p
φ ). In the next

step, we want to show that there exists a φm ∈ WS such that Gv,A(φm) = e0(v, A) and
φm 
→ (ρ0, j p

0 ).
Let φ ∈ WS be a determinant such that φ 
→ (ρ0, j p

0 ) (if N < 4, we need the
assumption ∇ × ( j p

0 /ρ0) = 0). By Theorem 6, we then have

GK (φ) = Tdet(ρ0, j p
0 ) = (φm, Kφm)L2 ,

for some φm ∈ WS . Note that φm is a determinant such that φm 
→ (ρ0, j p
0 ) and

GK (φm) = (φm,m, Kφm,m)L2 = (φm, Kφm)L2 .

Furthermore,

GH0(φm) = Q(ρ0, j p
0 ) = (ψm, H0ψm)L2 ,

for some ψm ∈ WN , which follows from Theorem 4. Note that ψm 
→ (ρ0, j p
0 ) =

(ρφm , j p
φm
). We have,

e0(v, A) = (ψm, H(v, A)ψm)L2

= (ψm, H0ψm)L2 + 2
∫

R3
j p
0 · A +

∫

R3
ρ0(v + |A|2)

= (ψm, Kψm)L2 + (ψm,
∑

1≤k<l≤N

|xk − xl |−1ψm)L2 + 2
∫

R3
j p
φm

· A

+
∫

R3
ρφm (v + |A|2),

where the first equality follows from Proposition 5. Since

�T (φm) = (ψm, Kψm)L2 − (φm, Kφm)L2

and

EW
xc(φm) = (ψm,

∑

1≤k<l≤N

|xk − xl |−1ψm)L2 − 1

2

∫

R3

∫

R3

ρφm (x)ρφm (y)

|x − y| dxdy,
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it follows that

e0(v, A) = (φm, Kφm)L2 + 2
∫

R3
j p
φm

· A +
∫

R3
ρφm (v + |A|2)

+ 1

2

∫

R3

∫

R3

ρφm (x)ρφm (y)

|x − y| dxdy + EW
xc(φm)+�T (φm) = Gv,A(φm).

�
Remarks.

(i) Any density pair (ρ, j p) computed from a φ ∈ WS is N -representable, but not
necessarily (non-interacting) v-representable. So Theorem 7 establishes a Kohn–
Sham approach for N -representable densities (whereas TK S is only defined on
A′

N ).
(ii) Recall that no Hohenberg–Kohn theorem can exist for CDFT formulated with

the paramagnetic current density. On the other hand, since ρ and j p determine
the ground-state, the Hohenberg–Kohn variational principle continues to hold for
CDFT formulated with these densities. However, the N -representable Kohn–Sham
approach outlined here does not use any variational principle for densities.

(iii) If we set φ(x1, . . . , xN ) = (N !)−1/2 det[ f k(xl)]k,l and define on (H1(R3))N the
functional

E( f 1, . . . , f N ) =
N∑

k=1

∫

R3
|∇ f k |2 + 2

N∑

k=1

∫

R3
Im( f k∗∇ f k) · A

+
N∑

k=1

∫

R3
| f k |2(v + |A|2)

+ 1

2

N∑

k,l=1

∫

R3

∫

R3

| f k(x)|2| f l(y)|2
|x − y| dxdy + Exc,

where Exc = �T + EW
xc , we can obtain the usual Kohn–Sham equations by

minimizing E( f 1, . . . , f N ) subject to the constraint ( f k, f l)L2 = δkl .

5 Summary

In this paper, a rigorous N -representable Kohn–Sham approach has been developed.
In Theorem 6, it is proven that a minimizing determinant φm exists such that

Tdet(ρ, j p) = inf{(φ, Kφ)L2 |φ 
→ (ρ, j p)} = (φm, Kφm)L2 .

From this, in addition to the fact that

Q(ρ, j p) = inf{(ψ, H0ψ)L2 |ψ 
→ (ρ, j p)} = (ψm, H0ψm)L2 ,
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for some wavefunction ψm , Tdet(ρ, j p) and Q(ρ, j p) have been used to define func-
tionals that account for the exchange-correlation energy and the residual energy
between an interacting kinetic energy and a non-interacting one. In Theorem 7, the
main result is given. Here it is shown that the ground-state energy and ground-state
densities can be obtained by minimizing an energy functional over the set of nor-
malized determinant wavefunctions with finite kinetic energy. Since any density pair
(ρ, j p) computed from such a determinant wavefunction is N -representable, but not
necessarily (non-interacting) v-representable, Theorem 7 establishes a Kohn–Sham
approach for N -representable densities.

Furthermore, in the one-electron case, the question when a minimizer ψ0 of the
Levy–Lieb functional FL L(ρ) = inf{(ψ, H0ψ)L2 |ψ 
→ ρ} is an eigenstate of some
Hamiltonian H(v) = −�+ v(x) has been addressed (Proposition 2). In Corollary 3,
criteria are given for ρ when this eigenstate ψ0 also is the ground-state. Thus, these
criteria become sufficient conditions for a particle density to be v-representable.
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